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Critical behaviour of random surfaces on the cubic lattice 

M KarowskiT 
Institut fur Theorie der Elementarteilchen, Fachbereich Physik, Freie Universitat Berlin, 
Amimallee 14, D-1000 Berlin 33, West Germany 

Received 22 November 1985 

Abstract. The phase diagram and the critical behaviour of an (intersecting) random surface 
gas model in three dimensions is studied by means of Monte Carlo simulations. The critical 
exponents (I, p, y and 8 are evaluated in the ‘critical window’ between the finite-size 
rounding and the correction-to-scaling regime. Within error bars, Ising exponents for the 
self-avoiding case (and along critical lines) and mean-field behaviour at tncritical points 
are obtained. For the self-avoiding planar surface model the Hausdorfl dimension is 
calculated (dH = 2.30*0.05). 

1. Introduction 

Recently [ 13 we analysed the phase structure of self-avoiding random surface gas 
models. In the present paper related models of random surfaces on cubic lattices in 
three dimensions are investigated. The phase structure is determined and the critical 
exponents and the corresponding amplitudes are calculated. Random surfaces are a 
useful concept in different regions of physics. Quantum field theories can be formulated 
in terms of random walks (polymers) [2]. Analogously, it is widely believed (cf [3] 
and references therein) that non-Abelian gauge theories are in some way related to 
random surfaces in d = 4 dimensions. An investigation of the critical behaviour should 
lead to a better understanding of gauge and dual string theories [4] in their continuum 
limits. 

Furthermore, self-avoiding random surfaces in three dimensions might [ 5 1  be useful 
for the understanding of microemulsions whose stability relies on a balance of entropy 
and energy of the interfaces (see [6] and references therein). They can also be expected 
to describe properties of flexible two-dimensional sheet polymers [7]. The self-avoiding 
random surface model is a natural generalisation of the solid-on-solid model [8] which 
is useful for describing the roughening of crystal surfaces and interfaces. For previous 
Monte Carlo simulations of random surfaces see also [9, 101. 

In reference [ 13 we investigated by means of Monte Carlo simulations a self-avoiding 
random surface gas model defined by the partition function 

where the sum extends over all configurations of closed self-avoiding surfaces on a 
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domain L3 of the cubic lattice. A configuration c E (eSAS comprised a (possibly discon- 
nected) collection of plaquettes in the lattice such that each link in c is contained in 
two plaquettes. The energy of c is taken to be proportional to the total surface 
s(c) = number of plaquettes in c and P s  = E S /  kT with E,  = energy of one plaquette. 
In addition we considered in [ 11 generalisations on this model introducing curvature 
energies or chemical potentials for topological quantities like the Euler characteristic 
and analysed the phase structure. Our previous [ l l ]  investigation of the two- 
dimensional self-avoiding loop gas model by means of Monte Carlo simulations we 
recently continued with a detailed study of the critical behaviour [12]. The critical 
exponents a, P, y and S were evaluated in the ‘critical window’ between the finite-size 
rounding and the non-critical (correction-to-scaling) regime. Since the critical tem- 
perature is known rather accurately (to 0.1%) [ 131 and since we could use large lattices 
(up to L = 80) with reasonable computer times we were able to calculate the exponents 
with small error bars and obtained Ising behaviour. 

In the present paper this method is applied to the three-dimensional self-avoiding 
surface gas model. However, the situation in this case is worse for two reasons: (i)  
the critical temperature is not known with comparable accuracy (to 2%) [ l ]  and (ii) 
reasonable computer times restrict the lattice size to L a 2 6 .  Therefore the critical 
window is rather narrow. The order parameter (see 0 2) which indicates the phase 
transition has a symmetry which suggests Ising-like critical behaviour for the self- 
avoiding surface gas model. Therefore it is useful to extend the model to a class which 
also contains, as a special case, the Ising model. This is the intersecting surface gas 
model discussed by Sterling and Greensite [9]. It is defined by the partition function 

The sum runs over all closed surfaces c E (e (including intersecting ones). The intersec- 
tion energy is proportional to the total intersection length l ( c ) ,  i.e. the number of the 
links contained in four plaquettes on the surface c and PI = q / k T  with = energy 
per link. For vanishing intersection energy PI = 0 the model is equivalent to the Ising 
model on the dual lattice (a surface c can be identified with the Peierls interfaces of 
an Ising configuration) and to the Z(2)  gauge model [21] (a surface c can be identified 
with a high-temperature expansion graph of the Z(2)  gauge model). In the limit of 
extremely strong repulsive interactions along the intersections P I  + as we obtain the 
self-avoiding surface gas model defined by ( 1 ) .  The phase structure of model (2) was 
analysed by Monte Carlo simulations in reference [9]. We will see in § 3 that the 
phase diagram is more complicated. In the P s ,  PI plane there are lines of second- and 
first-order phase transitions, tricritical points and a point where five phases coexist. 

A configuration of model (2) can be generated on a computer iteratively as follows. 
Starting from an old configuration one gets a new one by a local change in a unit 
cube. A local change means the replacement of empty plaquettes by occupied ones 
and vice versa (i.e. the ‘change a cube’ operation of reference [9]). By a Monte Carlo 
simulation one generates samples of equilibrium ensembles of configurations ci. In 
the heat bath updating procedure one sequentially sweeps all L3 unit cubes and accepts 
the new configuration with probability 

W n e w / (  wold + wnew) 

where the w are the Boltzmann factors 
(3) 

w = exp( -energy/ kT). (4) 
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The thermal average of a variable A is then approximated by 

By this Monte Carlo method the energy, specific heat, order parameter and susceptibility 
near to some points along the critical line and tricritical points are computed. Con- 
sistency with Ising behaviour along the critical lines and mean-field behaviour at the 
tricritical points is obtained. 

The paper is organised as follows. In 9 2 symmetry properties of the intersecting 
surface gas model are derived and order parameters are defined. Section 3 presents a 
discussion of the phase diagram. In 99 4 and 5 the critical behaviour of the self-avoiding 
and the intersecting surface gas model, respectively, is analysed by means of Monte 
Carlo simulations. In 9 6 the 'Hausdorff dimension' dH of a self-avoiding planar surface 
model is determined. Section 7 contains concluding remarks as well as a table of the 
results for the critical and tricritical exponents a, P, y, 6, a,, PI, y,, 6, and the amplitudes 
A*, B, C', D, A;, B, ,  C ;  and D, .  

2. The intersecting surface gas model 

In this section we derive symmetry properties and define order parameters of the 
intersecting surface gas model defined by the partition function (2).  Any configuration 
c E % of closed surfaces contributing in equation (2) is given by a collection of numbers 
s ( x ,  i ,  j )  defined on all plaquettes ( i , j ) ,  1 s i < j s 3, at all lattice points x E L3. We set 
s(x, i ,  j )  = 1 or 0, if the plaquette belongs to the surfaces of the configuration c, or not, 
respectively. The total surface is then 

s ( c ) =  s(x, i , j) .  
x , i < j  

Analogously, we define on all links i = 1, 2 ,  3 at all lattice points x E L3 the function 
I ( x ,  i )  = 1 or 0 if the link belongs to the intersection lines of the surfaces of a configur- 
ation c, or not, respectively, such that the total intersection length is 

I ( c )  =E I (x ,  i). 
x, i 

( 7 )  

The set of closed surfaces %' is obviously invariant under the transformation c +  c' 
defined by 

s(x, i , j ) + s ' ( x ,  i , j ) = l - s ( x ,  i , j )  (8) 

s(c)  + s( c ' )  = 3L3 - s(c). ( 9 )  

(10) 

with the trivial transformation law for the total surface 

For the intersection length the following transformation law holds: 

I (  C) + I (  c') = I (  C) - 2s(  C )  + 3L3. 

This is not so obvious but can be verified by analysing the neighbourhood of any link 
under the transformation c -$ c' (see below). Hence we have a symmetry property of 
the intersecting surface gas model which can be expressed by 

(11) Z ( P 5 ,  P I )  = e x p [ - 3 L 3 ( P 5 + P , ) l Z ( - P 5 - 2 P , ,  P I ) .  
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For vanishing intersection energy P I  = 0 this is the well known ferro-antiferromagnetic 
symmetry of the Ising model. 

Another formulation of the intersecting surface gas model is analogous to the 
eight-vertex formulation of the loop gas model in two dimensions (cf [13]): 

where the sum extends over vertex configurations at the links of the lattice: w ( x ,  i )  = 
w l ,  . . . , w8 with w 1  = exp(P,/2), w2 = exp(-P,/2 - P I ) ,  w 3  = * = w8 = 1 with the stan- 
dard assignment given in figure 1.  The transformation c +  c’ defined by (8) means 
wl*wz,  w34+w4, w5-06, w7-wS. In this formulation the proof of (10) is simpler. 

Motivated by the Ising spin a ( x )  it is obvious to define the local order parameter 
u ( x )  and a staggered one u ’ ( x )  for the general intersecting surface gas model (2). A 
closed surface divides the lattice L3 into two parts, an inside and an outside region. 
Hence there exists a unique function u ( x )  on the lattice points x E L3 for any configur- 
ation (with the arbitrary normalisation u(0)  = 1)  such that 

if x is outside c 

if x is inside c. 
a ( x )  = 

In order to preserve the symmetry 

a ( x ) +  - u ( x )  (14) 
we replace in the following the set of configurations % in (2) by %+U %- where %* = % 
and c E %,#a(O) = il. There exists also a spin formulation of the intersecting surface 
gas model (2) 

with nearest ( NN),  next-nearest ( N N N )  and around a plaquette (plaq) interactions 
J1 = P,/2 + P,/2 and J2 = J3 = -Pl/8. 

Under the symmetry transformation (8) the spin a ( x )  goes over into the staggered 
one 

a ( x ) +  o ’ ( x )  = ( - l ) x I + x 2 + x  3 a ( x ) .  (16) 
Let a( U’) be the site-averaged (staggered) spin 

a(’) = a ( ’ ) ( x ) /  L3 
X E  L3 

n 

U 
12 ) 141 (6) (8) 

Figure 1. Vertex assignment at a link on the cubic lattice. 
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then the (staggered) ‘magnetic’ order parameter is defined by the statistical average 

( U ( ‘ ) ) .  (18) mo) = 

The symmetry of the model which corresponds to the order parameter m‘” is a Z(2)  
one (cf (14)). Therefore, if a second-order phase transition exists from the symmetric 
( m ” )  = 0) high-temperature phase to a symmetry breaking ( m ( ‘ )  f 0) low temperature 
phase, the transition should be Ising-like. This will be verified in §§ 4 and 5 by means 
of Monte Carlo simulations. An external (staggered) ‘magnetic’ field h‘” corresponding 
to the order parameter m“) will be introduced by 

Z(P,, P I ,  h, h ’ ) =  e x p [ - j 3 , s ( c ) - P l l ( c ) + h a + h ’ c r ’ ] .  (19) 
C E  w 

Along the line P I  = -Ps there exists in addition an ‘electric’ order parameter, ‘polari- 
sation’, 

with the local field defined on the plaquettes 

p ( x ,  i ,  j )  = s(x, i , j )  -4. (21) 

The denotation ‘electric’ is motivated by the vertex formulation (12) of the model (cf 
[14]). By (6) the ‘polarisation’ is related to the total surface average 

p = ( s ) / L 3 - $  (22) 

Therefore an external ‘electric’ field can be identified with -&. The symmetry group 
along P I  = -Ps is Z (2 )  x Z(2) 

Hence a critical point should not be Ising-like. As we will see in § 3 there exists a 
first-order transition from a symmetric ( p  = 0, m = m’ = 0) to a symmetry breaking 
phase ( p Z 0 ,  m Z O  or m ’ f O ) .  

3. The phase diagram of the model 

The phase diagram of the intersecting surface gas model defined by (2) was already 
roughly discussed in reference [9] by means of Monte Carlo simulations, cf figure 2. 
The Monte Carlo results presented in this paper support this picture only up to some 
modifications discussed below. A disordered phase for small P s  - P I  with m = m’ = 0 
is separated by a second-order phase transition line from an ordered ferro- (anti- 
ferro)magnetic one for large (small) Ps+ P I  with m # 0, m’ = 0 ( m  = 0, m‘ # 0). The 
critical Ising point is at ( P , ,  PI) ’  = (0.443,O) and for the self-avoiding random surface 
gas model P I  +CO our Monte Carlo data (see also § 4) imply 

P~=0.353*0.001. (24) 
For small P I  the line P I  = -Ps of first-order phase transitions separates the ordered 
phases. However, the juncture region of all phases near PS = - P I  = 0.609 is more 
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Figure 2. Phase diagram of the intersecting random surface gas model in the &, PI  plane 
showing first- (full curve) and second- (broken curve) order phase transition lines; (0) 
are Monte Carlo data. The line of symmetry is given by p,+ P I  = 0. 

complicated than supposed in reference [9]. The intersecting surface model in three 
dimensions is analogous to the intersecting loop model in two dimensions 

where I ( c )  is the total loop length and i ( c )  is the number of intersecting points. The 
phase diagram of this model which is equivalent to an asymmetric eight-vertex model 
(cf equation (12)) was analysed in reference [ 131 and is qualitatively identical to that 
shown in figure 2 (replacing ps by 2p, and PI by pi). Along the line 2p, + pi = 0 the 
model is a solvable Baxter model with a non-Ising-like (cf the remarks after equation 
(23)) second-order phase transition at P r  = -pi/2 = In 3. This point is a juncture of 
the two lines of second- and the one line of first-order phase transitions in the PI ,  Pi 
plane. In the three-dimensional parameter space p,, pi,  h = h' the point is a tetracritical 
point where four critical lines meet tangentially a first-order transition line, a phase 
structure similar to that of the two-dimensional Potts model [15]. However, in three 
dimensions the zero-field Potts model is generally believed to show a first-order 
transition and the phase diagram is more complicated. Our Monte Carlo simulations 
show similar behaviour for the intersecting surface gas model. The juncture region 
mentioned above is shown in figure 3 in a P S + p r ,  plane where the symmetry (8) is 
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Figure 3. A cutting out of figure 2 (in the p,+ p i ,  P I  plane) in the neighbourhood of the 
tricritical points (A) and the point (0) where the disordered phase coexists with four 
ordered ones; (0) are Monte Carlo data. 

more conspicuous. Along the line Ps+ P I  = 0 we observe a first-order phase transition 
at 

P:”= -P~5’=0.609*0.001. ( 2 5 )  
At this point five phases coexist: a disordered one with m = m’ = 0 and four ordered 
ones with m S 0, m’ = 0 and m = 0, m ‘ S  0. Along the first-order transition line Ps+ P I  = 
0, PI  < Pj” the four ordered phases coexist. At the point ( P s ,  PI ) ‘”  another first-order 

I L  I 

I L 1 1 
06 o s  0 4  

Pi  

Figure 4. The energy against P I  diagram corresponding to figure 3 showing the transition 
energies and the energy jump at the first-order transition line. 
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1 

Figure 5. Schematic phase diagram of the intersecting random surface model in the p, + p,, 
pi, h = h ’  space showing eight coexistence planes, four tricritical points and critical lines 
(broken curves). 

transition line starts where the disordered phase coexists with two ordered ones m S 0, 
m’ = 0 and pass over at a tricritical point ( p s ,  to the critical line discussed above. 
By means of ‘mixed start’ Monte Carlo simulations on a 22 x 22 x 44 lattice the transition 
points, the transition energies and the tricritical point were determined: 

to the transition line. 
0.1 parallel 
0.001 perpendicular 

( p s ,  pi) ‘= (0.568,0.510) f 

Because of the symmetry (8) the analogue holds true for m-m’ and p s + p p - p s - p f .  
The energy/ kT = ( p s s  + PI/) against P I  diagram in figure 4 shows the transition 

energies and the jump along the first-order transition line. The complete phase diagram 
in the three-dimensional parameter space ps+ PI, PI,  h = h’ is depicted qualitatively in 
figure 5 .  

4. Critical behaviour of the self-avoiding surface gas model 

In this section the critical exponents and amplitudes of the self-avoiding surface gas 
model in three dimensions are calculated by a method applied recently [12] to the 
analogous loop model in two dimensions. The order parameter, magnetisation, is 
defined by (18), and (19) yields 

a 
ah m = ( a ) = - l n Z ( P , , ~ ,  h,O)lh=,, .  (27) 

It should vanish above a critical temperature T, and should show power behaviour 
below (near) T, defining the critical exponent p and the amplitude B :  

m = BlslP T.T Tc (28) 

E = ( T - Tc)/ T. (29) 

with 
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. .  

The Monte Carlo data confirm this behaviour, cf figure 6 where the order parameter 
m is plotted against the temperature T (in units of E, /  k ) .  Any value is calculated (in 
a thermal loop) as an average over 500 configurations each obtained after five complete 
sweeps through the 263 lattice. Log-log plots of the data for lattices of size L= 10, 
20, 26 are given in figure 7 where ln(m) is plotted against lnlsl. The critical behaviour 
(28) should show up in a linear behaviour of the data in the ‘critical window’. This 
region is bounded away from T, by corrections to scaling (which depend on the 
physical quantity to be considered) and near to T, by finite-size rounding effects (which 
depend on the lattice size L, i.e. on the computer time). This size dependence shows 
up in figure 7. In the previous investigation of the loop gas model [12] we profited 
from an accurate value of the critical temperature obtained in reference [13] with a 
finite-size transfer matrix method. Unfortunately, for the self-avoiding surface gas 
model there exists only a rather uncertain Monte Carlo value p,=0.36*0.01 [l] .  
However, the ‘critical window’ method also yields a procedure to get a rather accurate 
value of the critical temperature. One chooses that value for T, in equation (29) which 
implies the ‘largest critical window’, i.e. the longest linear behaviour in the plots of 
figure 7 for all lattice sizes L. With this method we obtain for the critical temperature 
of the self-avoiding surface gas model T, = E,/  kpz with 

pi=  0.353 *0.001. (30) 
The linear fit in figure 8 implies for the lattice size L = 26 effective values for the 
exponent and the amplitude 

/326 = 0.29 * 0.01 (31) 

B,,= 1.4*0.1. (32) 
A finite-size extrapolation to L = CO gives 

p = 0.32 * 0.01 

.. 

Figure 6. Monte Carlo results for the self-avoiding random surface gas model. The order 
parameter Iml calculated on a cubic lattice of size L = 26 with periodic boundary conditions 
is plotted against the temperature T in units of ~ * / k  The data indicate a second-order 
phase transition at T, = 2.83. 
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. a .  .. * 

- 2  -7 L--, - 5  -3 I 
In I E I  

Figure 7. Log-log plots of the order parameter In/ml against lnlsl ( E  = ( T -  T c ) /  T )  for 
L =  10, 20 and 26 lattices, showing the L dependence of the finite-size rounding effects 
near to the critical temperature. 

B = 1.5*0.1. 

Within error limits the critical exponent p coincides with the Ising value p = 0.325 [ 161. 
The response of the spins to an applied small external magnetic field H defines 

the susceptibility x. From equation (19) with h = H/ kT the relation to the spin 
fluctuations follows: 

am 1 a2 
aH k T a h 2  

x =-=- -In 

= ( ( u - ( u ) ) * ) / k T  = A m 2 / k T  (33) 

A log-log plot of lnAm2 against lnl&( is shown in figure 9. A linear fit within the 
‘critical windows’ yields sufficiently accurate values for the exponents 7, y’ and 
amplitudes C’ defined by 
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In I E I  

Figure8. Log-log plot of the order parameter lnlml against lnlEl for a L= 26 lattice. The 
linear fit in the ‘critical window’ yields the exponent and amplitude of (31) and (32). 

In  I E  I 

Figure 9. Log-log plot of the susceptibility In Am2 against ln1.E for a L = 26 lattice. The 
points and crosses correspond to the low and high temperature phases, respectively. 

The Monte Carlo data imply 
y’ = 1.22 * 0.05 

y =  1 .3 i0 .2  

C- = 0.35 * 0.03 

Cf = 2.1 k0.3. 
(35) 

Again, the critical exponents ’y, y’ are compatible, within error limits, with the Ising 
value y = 1.24 [ 161. 

Next, the specific heat per site 
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is studied near the critical temperature T,. From (2), it is related to the energy 
fluctuations 

(37) 
The most singular part at T = T, defines the critical exponents a’, a and amplitudes 
A’ below and above T, 

C/ k p ,  = (( s - (s))’)/ L3 = AS’/ L3. 

A log-log plot of Monte Carlo data is shown in figure 10. The quantity ln(As2/L3) is 
plotted against lnJ&( for a 263 lattice. Unfortunately, for the specific heat the corrections 
to scaling seem to be more significant than for the other quantities discussed above. 
Hence the ‘critical windows’ for lattice sizes with reasonable computer time 
appear rather narrow. Therefore we obtain only very rough estimates for the critical 
exponents a‘ and a. The linear fits in figure 10 imply the exponents 

a’ = 0.2 *0.1 

a = 0.3 0.2 
(39) 

which are not in contradiction with the Ising value a =0.11 [16]. 

of the critical isotherm m( h, T = T,) for small values of I hl is 
Using the definition of the magnetic field in equation (19) the scaling behaviour 

m = Dlh1’”. (40) 
To determine the critical exponent 6 and the amplitude D in figure 11 In( m )  is plotted 
against lnlhl at the critical temperature T =  T,.  The analysis of a linear fit in the 
‘critical window’ gives 

S = 5.2 * 0.2 

D = 1.37 * 0.05 

-7 - 5  -3 -1 
In  I E I  

Figurelo. Log-log plot of the specific heat ln(As2/L3) against lnlEl for a L = 2 6  lattice. 
Obviously, there is no reasonable linear behaviour range and the fits give only very rough 
estimates for the exponents a’ and a. 
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- 1  5 1 -  
-e  -6 - 4  -2 

I n Ih l  

Figure 11. Log-log plot of the critical isotherm m( h, T = Tc),  lnlm against Inlhl for a L = 26 
lattice. 

consistent (after finite-size extrapolation L+ CO) with the Ising value 6 = 
( 2 +  d - ~ ) / ( 2 -  d + 77) ~ 4 . 9  [16]. 

5. Critical behaviour of the intersection surface gas model 

An analysis of the critical behaviour of the general intersecting surface gas model 
(along the critical lines for finite values of P, )  as detailed, has not been performed for 
the self-avoiding case (described in the previous section). But some Monte Carlo 
simulations for p = 0.5, 0 (the Ising case) and -0.4 support the conjecture that the 
model has Ising-like critical behaviour along the critical line from p, = CO down to the 
tricritical point pi.  

At a tricritical point in three dimensions mean-field behaviour (up to logarithmic 
corrections) is expected [17]. This is in agreement with the Monte Carlo results to be 
presented in this section. For the determination of the tricritical exponents at the 
tricritical point (26) the intersection surface gas model was simulated on a lattice with 
size L=20  and T c  T,. Figure 12 shows a log-log plot of the data for the order 
parameter m. A linear fit in the ‘critical window’ yields effective values for the exponent 
pt and the amplitude B, defined analogously to (29) 

p:e= 0.21 zt 0.02 
g e f f  - 

t - 1.8zt0.3. 

Respecting finite-size corrections (which are obviously more significant for p compared 
with the other exponents, cf (32), (33) and (36), (42)) compatibility with the mean-field 
value for the tricritical exponent p, = f is found. 

The singular behaviour for T =  T, of the susceptibility can be read off figure 13 
which shows a log-log plot of Am’. The linear fit implies the tricritical exponent $ 
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Figure 12. Log-log plot of the order parameter for the intersecting surface gas model at 
the tricritical point lnlml against In/el ( E  = ( T -  T , ) / T )  for a L = 2 0  lattice. 

Figure 13. Log-log plot of the susceptibility at the tricritical point In(Am2) against 
( T < T,) for a L = 20 lattice. 

and amplitude C ; :  
y: = 1.01 *0.05 

c; = 0.1 1 f0.02. 

Correspondingly the log-log plot of the specific heat in figure 14 gives 

a: = 0.54 * 0.05 

A; = 0.42 f 0.05 
to be compared with the mean-field value a, = 4. 

(43) 

(44) 
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Figure 14. Log-log plot of the specific heat at the tricritical point ln(c/k)  against ln/el 
( T < TJ. 

The log-log plot in figure 15 of the tricritical isotherm of the order parameter at 
the tricritical point yields the exponent 6, and amplitude D,: 

6, = 5.4 f 0.2 

D,= 1.6i0.4 
(45) 

whereas the mean-field value is 6, = 5. 
Hence one can conclude that, taking finite-size extrapolations to L = CO into account, 

the Monte Carlo data for the intersecting random surface gas model at the tricritical 
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points given by (26) are consistent with mean-field behaviour which is expected in 
three dimensions [ 171. 

6. The HausdorfT dimension of a self-avoiding planar random surface 

In this section a model of a self-avoiding random surface with the fixed topology of 
the sphere is considered. The model is defined by the partition function (1) where the 
sum runs over all configurations of self-avoiding planar closed and connected surfaces 
on a cubic lattice. On the infinite lattice for low temperatures the surface has finite 
size and energy. Both diverge at the critical temperature T, (PS = 0.53, cf [9]). The 
average radius of gyration 6 (which is of the order of the correlation length) behaves 
for T t T, like 

6 -  (T, - T)-”. (46) 

The critical exponent v is related to the ‘HausdorfT dimension’ [18] of the surface 

d H = l / V  (47) 

which is defined (for T t T,) by 

dH = lim lim (In s(R))(s)/ ln R. 
R+m S+m 

The average ( ) (s )  is taken only over configurations with energy s. The energy s ( R )  
is the number of plaquettes of the surface contained in a sphere (or for practical 
reasons a cube) with diameter R such that the surface passes its centre. It follows 
that, on average, 

(s(R))-  RdH as R+CO (49) 

for infinitely extended surfaces. 
For a numerical determination of the ‘HausdorfT dimension’ by means of Monte 

Carlo simulations we proceed as follows. On a periodic lattice of size L = 52 for 
growing temperatures slightly below the critical one ( P  = 0.54, . . . ,0.53 in steps of 
0.0002) the average (In s( R))(s) is determined as a function of the configurational 
energy s and the cube diameter R. The cubes are taken with diameter R = 2,3, .  . . , 10 
and the energies s in the intervals ]1000,1100], . . . ,]4900,5000]. If the surface reaches 
a size such that it would touch itself around one period, the Monte Carlo run is 
restarted with p,=O.54 and a small surface. Five such restarts have been taken into 
account. After an extrapolation to s + CO in the form 

(In s(R))(s)  =On s(R))m+o(l /S)  (50) 

we obtain the function S,( R )  =(In s( R)),/ln R which is plotted against l / ln  R in 
figure 16. A linear extrapolation to R + CO gives the HausdorfT dimension of a closed 
self-avoiding planar surface 

(51) 
This value is in good agreement with a Flory-type formula d, = (4+ d ) / 3  = 2f derived 
in reference [19] and in less good agreement with a renormalisation group result 
dH = 2.5 of the same authors. 

dH = 2.30 f 0.05. 
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Figure 16. Plot of the function (In s(R)),/ln(R) against l / ln (R)  for a self-avoiding planar 
random surface. The area of the surface inside a cube with diameter R is s ( R )  and ( )- 
means the extrapolation to an infinite surface. The value at R = 03 gives the H a u s d o d  
dimension d, = 2.3. 

7. Conclusions 

The phase diagram of an intersecting random surface gas model has been analysed 
by means of Monte Carlo simulations. Lines of second- and first-order phase transi- 
tions, tricritical points and a point where the disordered phase coexists with four ordered 
ones have been found. As a main result Ising-like critical behaviour for the self-avoiding 
case, as well as along the critical lines, has been established. The Monte Carlo data 

Table 1. Summary of Monte Carlo results for the self-avoiding surface gas model compared 
to the Ising values [16]. The exponents and amplitudes have been calculated at the critical 
point P,  = 0.353 on 263 lattices. For p and B in addition the finite-size extrapolated values 
are given. 

Critical exponents Self-avoiding Ising 
and amplitudes surface model model [ 161 

P26 0.29 It 0.01 
B,, 1.4* 0.1 
P 0.32*0.01 0.325 
B 1 . 5 f O . 1  
Y'  ( r<  TJ 1.22 * 0.05 1.24 
C -  0.35 * 0.03 
Y ( T >  TA 1.3 f 0.2 1.24 
C +  2.1 f0 .3  
( I ' ( T <  T,) 0.2*0.1 0.1 1 
a (T> T,) 0.3 f 0.2 0.11 
6 5.2 i 0.2 4.9 
D 1.37f0.05 
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Table 2. Summary of Monte Carlo results for the intersecting surface gas model, compared 
to mean-field values. The exponents and amplitudes have been determined at the tricritical 
point (&, p,)'=(0.568. -0.510) on 203 lattices. 

Tricritical exponents Intersecting 
and amplitudes surface model Mean field 

Pt 0.21 i 0.02 0.25 
Bt 1.8 f 0.0 
Y :  1.04i0.05 1 
Cl 0.11io.02 

4 5.4 f 0.2 5 
a: 0.54 f 0.05 0.5 

Dt 1.6f0.4 

at the tricritical point are consistent with mean-field behaviour. The numerical results 
are summarised in tables 1 and 2. The Hausdorfl dimension of a self-avoiding planar 
random surface has been calculated. The result d ,  = 2.30 0.05 is in agreement with 
a Flory-type formula [ 191. There also exist preliminary Monte Carlo data [20] for the 
critical behaviour of the model of self-avoiding surfaces including Gaussian curvature 
energy which we considered in reference [ 11. The data suggest that the critical behaviour 
is independent of the curvature energy and is Ising-like along the critical line discussed 
in reference [l] .  However, it is expected that this model (and analogously models 
with 'bending' energy) also show non-universal critical behaviour in other regions of 
the parameter space; This shall be investigated in the future. 
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